CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, FACULTY OF SCIENCE, THE UNIVERSITY OF TOKYO, HONGO, BUNKYO-KU, TOKYO, JAPAN

Molecular Structures of Phosphoryl Fluoride, Phosphoryl Chloride, and Thiophosphoryl Chloride Studied by Gas Electron Diffraction

BY TOHEI MORITANI, KOZO KUCHITSU,* AND YONEZO MORINO

Received April 3, 1970

The bond lengths and angles for POF₃, POCl₃, and PSCl₃ have been determined by gas electron diffraction to be $r_g(P-F)$ = 1.5240 \pm 0.003 Å, r_g (P-O) = 1.4356 \pm 0.006 Å, and θ_α (F-P-F) = 101.3 \pm 0.2° for POF₃; r_g (P-Cl) = 1.9931 \pm 0.003 Å, $r_{g}(P-O) = 1.4487 \pm 0.005$ Å, and $\theta_{\alpha}(Cl-P-Cl) = 103.3 \pm 0.2^{\circ}$ for POCl₃; and $r_{g}(P-Cl) = 2.0114 \pm 0.003$ Å, $r_{g}(P-S) =$ 1.8851 \pm 0.005 Å, and θ_{α} (Cl-P-Cl) = 101.8 \pm 0.2° for PSCl₃. The uncertainties represent estimated limits of experimental error. For each molecule the structure is found to be consistent with the corresponding rotational constant *Bo.* The observed bond lengths and angles for these molecules are compared with one another and with those for related molecules. The systematic differences can be accounted for in terms of the Gillespie model. Smooth correlation curves between the bond lengths or angles in PXY₃ and the electronegativities of the atoms coordinated to the phosphorus atom are obtained.

Introduction

The relationship between the structure and bonding in molecules is a classical problem but, in a sense, is a still uncultivated field in chemistry. No theory has been presented to explain it thoroughly, nor are there a sufficient number of accurate data available from experiment.

Some years ago, Gillespie proposed a simple model¹⁻⁸ for a systematic interpretation of the stereochemistry of inorganic molecules. His success has stimulated chemists to investigate the structures of molecules, in particular, the halides of group V elements. 4^{-6} Phosphoryl and thiophosphoryl halides, together with PF3 which has recently been studied by the present authors, 6 constitute an appropriate model series for such stereochemical studies. The present work aims to answer the following question: How are the $P-F$ $(P-C1)$ bond length and F-P-F (Cl-P-C1) angle influenced by the coordination of the oxygen or sulfur atom to the lone pair of PF_3 (PCl₃)?

Electron diffraction by the sector-microphotometer method is one of the most suitable techniques for this purpose because it enables us to determine the structures of the above molecules directly and accurately. Rotational constants obtained from spectroscopy also give independent information on molecular structure. The consistency of the diffraction with spectroscopic results, **m** hich should be of primary importance in the structure analysis, has been examined in detail in the present study.

The structures of POF₃, POCl₃, and PSCl₃ reported so far are listed in Table I. They were first studied by

Beach and his coworkers,^{7,8} who used the visual method of electron diffraction. Williams, *et al.*,⁹ and Hawkins, $et \ al.,¹⁰$ later determined the rotational constants B_0 from microwave spectroscopy. The latter group derived the structure of POF_3 using the B_0 and the bond angle of 106" obtained in the above diffraction study. The former authors revised the diffraction data for POF_3 and POC1₃ using their B_0 constants, while for PSC1₃ they determined the structure from their microwave data alone,

After the present work was undertaken, an electron diffraction study of POCl₃ and PSCl₃ was reported by Vilkov, $et \ al.$ ¹¹ A comparison with their results is discussed in a later section.

Experimental Section

Liquid samples of $POCl₃$ and $PSCl₃$ obtained from commercial sources were purified by fractional distillation. Gaseous POF₃ (bp -39.7° and mp -39.1°)¹² was synthesized by the reaction¹³
2POCl₃ + 3ZnF₂ -> 2POF₃ + 3ZnCl₂. The crude product trapped at liquid nitrogen temperature contained POF₂C1, POF- $Cl₂$, and $SiF₄$ as impurities. A considerable difficulty was encountered in preparing pure POF_3 , but the impurities were removed by a careful distillation in a still with a head cooled with Dry Ice and acetone as described by Tarbutton, et $al.^{12}$ The $POF₈$ gas had a slight tendency to attack glass and produce $SiF₄$, which was removed by means of **a** methylcyclohexane slush bath $(-126°)$ just before the electron diffraction experiment. Before and after the photographing, infrared spectra were recorded to check for impurities, which were found to be negligible.

The detail of the electron diffraction instrument and the experimental procedures have been reported elsewhere.'4 Diffraction photographs were taken with an *r3* sector. The accelerating voltage was on the average 40.59 kV, which corresponds to the electron wavelength of 0.05970 Å. This wavelength was later calibrated with reference to the r_a (C=O) bond length (1.1646 Å) of carbon dioxide measured under the same experimental condi-

(11) L. V. Vilkov, L. S. Khaikin, **A.** F. Vasilev, and T. F. **Tulyakova,** *Zh. Slvukt. Khim.,* **9,** 1071 (1968).

^{*} To whom correspondence should be addressed.

⁽¹⁾ R. J. Gillespie and R. S. Nyholm, *Quart. Rev., Chenz. Soc.,* **11,** 339 (1957).

⁽²⁾ K. J. Gillespie, *J. Cheni. Educ.,* **40,** 295 (1963); *laovg. Chem.,* **5,** 1634 (1966); *Aizgew. Chem.,* **79,** 885 (1967); *A?zgew. Chenz., Int. Ed. Engl.,* **6,** 819 (1967).

⁽³⁾ L. *S.* Bartell, *Inovg. Chem.,* **5,** 1635 (1966); *J. Chem. Educ.,* **46,** 754 (1968).

⁽⁴⁾ K. **W.** Hansen and L. *S.* Bartell, *Iizovg. Chetn.,* **4,** 1775 (1965); L. S. Bartell and K. W. Hansen, ibid., **4,** 1777 (1965).

^{(5) (}a) **A.** J. Downs and R. Schmutzler, *Speclvochim. Ada,* **21,** 1927 (1965); (b) *ibid., Pad A,* **23,** 681 (1967).

⁽⁶⁾ *Y.* Morino, K. Kuchitsu, and T. Moritani, *Inorg. Chem., 8,* 867 (1969).

⁽⁷⁾ L. 0. Brockway and J. *Y.* Beach, *J. Amer. Chem.* Soc., **60,** ¹⁸³⁶ (1938).

⁽⁸⁾ J. *Y.* Beach and D. P. Stevenson, *J. Chem. Phys.,* **6,** 75 (1938).

⁽⁹⁾ Q. Williams, J. Sheridan, and W. Gordy, *ibid.,* **20,** 164 (1952).

⁽¹⁰⁾ PI'. J. Hawkins, V. W. Cohen, and W. S. Koski, *ibid.,* **20,** 528 (1952).

⁽¹²⁾ G. Tarbutton, E. P. Egan, and S. G. Frary, *J. Amel. Chein.* Soc , **63,** 1782 (1941).

⁽¹³⁾ **A. A.** Williams, *Imvg. Syn.,* **6,** 95 (1957).

⁽¹⁴⁾ *Y.* Murata, K. Kuchitsu, and M. Kimura, *Jep. J. Appl. Phys.,* **9,** 591 (1970).

tions. The gas was introduced into the diffraction chamber through a nozzle of 0.2-mm diameter. The pressure of the chamber was below 6×10^{-5} Torr during photographic exposure. The nozzle temperature was 20° and the electron beam current was about $0.40 \mu\text{A}$. The sample pressures were 52, 26, and 37 Torr, and the exposure times were 50, 25, and 45 sec for POF_3 , POC1₃, and PSC1₃, respectively. The photographs were recorded on Fuji process hard plates.

Three or four plates taken at the camera length of 10.782 cm for every molecule and two plates at 24.322 cm for POF_3 were used for the following analyses. Optical densities were measured across the plate at intervals of $\Delta q = 1 \text{ Å}^{-1}$ by means of a microphotometer and an integrating digital voltmeter. The observed optical densities (0.13-0.69) were assumed to be proportional to the electron intensities. The background intensity due to extraneous scattering was subtracted by means of an empirical method.14

Analysis

The radial distribution curves, **l5** calculated from the experimental intensities and smooth empirical backgrounds (Tables 11-IV) with an artificial damping

Figure 1.-Experimental radial distribution curves. **(15)** J. **Karle and I.** L. **Karle,** *J. Chem. Phys.,* **18, 967 (1950).**

 ^a Typical experimental leveled intensity $I_t(q)$ and background $I_b(q)$, defined in ref 16, for long (top) and short (bottom) camera lengths: 24.322 and 10.782 cm.

 j10 22% 2j28 2,l4

25% *22%*

252,

106 2341 111 232: 2289 *2308* 126 2277

755.1

TABLE I11 INTENSITY AND BACKGROUND DATA FOR POC13^ª

٩	Ιt	1 _b	. q	1_{t}	⊥р	q	т.	ı,	q	∔Ł.	∸১	q	÷.	4b
26	1860	\sim	27	1863		28	1892		29	1886		50	1898 1906	
31		1928 1899	32	1970 1891		33	1994 1884		34	1972 1877		35		1900 1870
36	1810	1864	57	1758	1859	38	1753	1855	39	1790	1851	40		1842 1848
41	1882 1845		42	1898 1845		43	1900	1842	44	1883 1841		45	1862 1841	
46	1854 1841		47	1808 1841		48	1793 1842		4G		1797 1842	50	1823 1843	
51		1858 1845	52	1885	1844	53	1887 1845		54		1869 1847	55		1845 1849
56		1826 1850	57	1823	1851	58	1830	1853	59		1843 1854	60	1855 1855	
61	1867 1856		62	1880	1857	65	1888 1859		64		1885 1860	65	1871 1861	
66		1847 1863	67	1830	1864	68		1824 1865	69	1840	1866	70	1865	1867
71	1891	1867	72	1900	1867	73		1899 1867	74	1883	1867	75	1866	1867
76	1856	1866	77	1850	1866	78	1847 1865		79	1849 1865		80	1851	1865
81	1860 1864		82		1874 1863	83	1884 1862		84		1885 1861	85		1874 1861
86		1860 1860	87		1842 1858	88		1837 1857	89	1844	1856	90		1852 1855
91	1858 1853		92		1864 1852	93		1864 1851	94	1855	1849	95	1844	1847
96		1836 1845	97	1836	1844	98		1833 1843	99	1836	1841	100		1838 1839
101	1846	1857	102	1848	1835	103		1846 1834	104	1840	1852	105		1831 1830
106	1818	1828	107		1813 1826	108		1811 1824	109	18.12	1822	110	1818	1819
111	1822 1817		112		1824 1815	115		1623 1813	114	1820	1810	115	1811	1808
116	1805	1805	117		1802 1803	118	1793 1801		119		1792 1798	120		1793 1795

 α Typical experimental leveled intensity $I_t(q)$ and background $I_{\rm b}(q),$ defined in ref 16, for the short camera length 10.782 cm.

TABLE IV

INTENSITY AND BACKGROUND DATA FOR PSCl3 ^a														
q.	1t	Ib.	q	I_t	$1^{\rm p}$	٩	1_{t}	16	٩	$\mathbf{I_t}$	$\mathbf{I}_{\mathbf{b}}$	Q	$I_{\rm t}$	$\mathbf{I}_{\mathbf{b}}$
						18	1467		19	1678		20	1854	
21	1919		22	1884		23	1812		24	1790		25	1788	
26	1761		27	1688		28	1606		29	1578		30		1626 1693
31		1717 1683	52		1789 1674	33		1788 1665	34		1727 1658	35		1645 1650
36	1581	1643	37	1566	1637	38	1580	1633	39	1604	1630	40		1625 1627
41	1640	1625	42		1655 1622	43		1667 1621	44	1663 1621		45		1638 1620
46	1605	1620	47	1581	1620	48	1576	1621	49	1590	1621	50		1614 1622
51		1638 1623	52	1655	1624	53		1659 1625	54		1652 1627	55		1634 1629
56		1619 1631	57		1606 1635	58		1604 1634	59	1617	1636	60	1639 1637	
61		1653 1638	62	1660	1639	63	1656	1641	64		1649 1642	65		1643 1643
66		1637 1644	67		1637 1646	68		1634 1647	69	1638	1649	70	1644 1651	
71		1660 1653	72		1670 1654	73	1672	1656	74		1665 1658	75		1656 1660
76		1647 1662	77		1652 1664	78		1660 1666	79		1673 1668	80		1676 1669
81	1674	1671	82		1673 1672	83	1675	1675	84		1677 1674	85	1676 1676	
86		1676 1678	87	1673	1680	88	1675	1682	89		1682 1684	90	1689 1686	
91	1656	1688	. 92		1699 1690	93	1695	1692	94	1694	1694	95	1688 1696	
96		1692 1698	97		1694 1699	98	1700	1700	99		1705 1702	100		1707 1704
101		1708 1705	102		1714 1706	103	1710	1708	104	1710	1710	105	1708 1712	
106		1708 1714	107		1709 1715	108		1713 1717	109	1721	1719	110		1727 1720
111		1728 1721	112		1728 1725	115		1725 1725	114		1722 1726	115		1723 1727
116		1728 1730	117		1729 1733	118		1734 1735	119		1740 1737	120		1743 1740

 α **Typical experimental leveled intensity** $I_t(q)$ **and background** $I_b(q)$, defined in ref 16, for the short camera length 10.782 cm. For an exact calibration of the scale factor, the listed **p** values should be divided by 0.9982.

factor of $exp(-0.00016q^2)$, are shown in Figure 1. No significant ghost peaks were found in any case. Though the peaks for POF_3 and $PSCl_3$ overlap so closely as to jeopardize a unique resolution into component peaks, nonoverlapping portions have provided sufficient information to determine all the structure parameters.

TABLE V

STRUCTURAL PARAMETERS AND MEAN AMPLITUDES FOR POF _{3^a}							
	$P-F. \AA$	$P-O. A$	$F \cdots F$. \AA	$O \cdot F$. \AA	$\theta(F-P-F)$, deg		
$r_{\rm a}$	1.5229 ± 0.003	1.4347 ± 0.006	2.3535 ± 0.004	2.5200 ± 0.006			
$r_{\rm g}$	1.5240 ± 0.003	1.4356 ± 0.006	$2,3554 \pm 0,004$	2.5214 ± 0.006			
r_{α}	1.5223 ± 0.003	1.4339 ± 0.006	$2.3541 + 0.004$	2.5202 ± 0.006	101.3 ± 0.2		
r_{α}^{0}	1.5226 ± 0.003	$1,4338 \pm 0.006$			101.3 ± 0.2		
r_e^a	1.5191	1.4288			101.3		
$l_{\rm obsd}$	0.0406 ± 0.003	0.0451 ± 0.005	0.0630 ± 0.004	0.0627 ± 0.003			
$l_{\rm{caled}}$	0.0404	0.0355	0.0675	0.0598			

*^a*Estimated by an approximate method using the Morse function with an anharmonic constant *a3* of the corresponding diatomic molecule.1s

TABLE VI STRUCTURAL PARAMETERS AND MEAN AMPLITUDES FOR POCl₃^a

	$P-Cl.$ \AA	$P-O. A$	$Cl \cdots Cl. A$	$O \cdots$ Cl. \AA	θ (Cl-P-Cl), deg		
$r_{\rm a}$	1.9918 ± 0.003	1.4468 ± 0.005	3.1269 ± 0.006	2.9095 ± 0.008			
$r_{\rm g}$	1.9931 ± 0.003	1.4487 ± 0.005	3.1291 ± 0.006	2.9111 ± 0.008			
r_{α}	1.9910 ± 0.003	1.4460 ± 0.005	3.1281 ± 0.006	2.9091 ± 0.008	103.3 ± 0.2		
r_{α}^{0}	1.9906 ± 0.003	1.4465 ± 0.005			103.3 ± 0.2		
r_e^a	1.9885	1.4458			103.3		
$l_{\rm obsd}$	0.0422 ± 0.003	0.0328 ± 0.004	0.0770 ± 0.006	0.0637 ± 0.004			
$l_{\rm{calcd}}$	0.0502	0.0356	0.0839	0.0687			

^a See corresponding footnote in Table V.

See corresponding footnote in Table V.

A standard least-squares method was carried out with a diagonal weight matrix¹⁶ to fit the experimental molecular intensity $qM(q)$ to the theoretical expression, using a correction for nonnuclear scattering calculated from the recent data for elastic and inelastic scattering factors." In the final step of the least-squares procedure, the following eight parameters were varied simultaneously: two bond lengths and one bond angle, four mean amplitudes, and the index of resolution. The asymmetry parameters κ for bonded distances were estimated from the *a3* parameters for diatomic molecuIes,18 1.891 (P-F), 2.034 (P-0), 1.67 (P-Cl), and 1.67 \AA^{-1} (P-S). The *k* parameters for nonbonded distances were ignored. An alternative least-squares analysis with four interatomic distances taken as independent variable parameters gave bond angles consistent to within the uncertainties quoted in Tables V-VII. The ranges of the data used are $15 \le q \le 120, 30 \le q \le$ 120, and 30 $\leq q \leq 120$, and indices of resolution are on the average 0.97, 0.88, and 0.98 for POF_3 , $POCl_3$, and PSC13, respectively. The relatively low index of resolution for POC13 seems to be due to the correlation with

Figure 2.-Experimental and best fit theoretical molecular intensity curves shown in dots and solid curves, respectively. Differences are also shown

mean amplitudes.16 The experimental and best fit molecular intensity curves are shown in Figure 2, and the corresponding error matrices¹⁹ are given in Tables (19) 0. Bastiansen, L. Hedberg, and K. Hedberg, J. *Chem. Phys.,* **27,** ¹³¹¹ (1957) .

⁽¹⁶⁾ *Y.* Morino, K. Kuchitsu, and *Y.* Murata, *Acta Cvystaliogu.,* **18,** ⁸⁴⁹ (1965) .

⁽¹⁷⁾ T. G. Strand and R. **A.** Bonham, *J. Chem. Phys.,* **40,** 1686 (1964); R. A. Bonham and T. **Ckaji,** *zbid.,* **86, 72** (1962); C. Tavard, D. Nicolas, and

M. **Rouault,** *J. Chim. Phys.,* **64,** 510 (1967). (18) K. Kuchitsu and *Y.* Morino, *Bulf. Chem. SOC. Jap.,* **88,** 805 (1965).

TABLE VI11

^{*a*} The elements are given by $\sigma_{ij} = \text{sgn}[(B^{-1})_{ij}] \left[|(B^{-1})_{ij}| \cdot V^*PV/(n-m) \right]^{1/s}$ for $n = 91$. The notation corresponds to that of ref 19. The units for the distance r_a and the mean amplitudes *l* are 10^{-4} Å, while the index of resolution *k* is given by 10^{-4} .

 a See footnote *a* of Table VIII; $n = 91$.

 a See footnote *a* of Table VIII; $n = 106$.

VIII-X. The interatomic distances and the mean amplitudes determined in the analyses are listed in Tables V-VII, which also contain the mean amplitudes calculated from the force constants reported by Ziomek and Piotrowski.20 All computer calculations were made with the HITAC-502OE of the Computer Center of the University of Tokyo.

Error Estimation - Two different estimates of the random errors, σ_1 and σ_2 , were obtained from the standard deviations and from the scatter of the parameter values for different plates.¹⁶ In most cases the σ_1 and σ_2 values were comparable with each other, so that the larger of them was taken as the random error σ . The systematic errors for the interatomic distances were estimated from the uncertainty in the scale factor determined by the analysis of carbon dioxide (standard deviation 0.06%). Thus the uncertainties in the interatomic distances were estimated to be $3 \left[(0.0006r)^2 + \right]$ σ^2 $\int^{1/2}$.

The systematic error in the bond angle was estimated to be negligible, because the angle parameter is unaf-

(20) J. S. **Ziomek** and E. A. Piotrowski, *J.* Chem. *Phys.,* **84, 1087 (1961).**

fected by the error in the scale factor. Hence, 3σ was taken as the uncertainty in the bond angles.

On the other hand, the errors in the mean amplitudes were attributed mostly to the extraneous scattering; thus the errors were estimated from the dependence of the results on how extraneous scattering was eliminated in the analytical procedure.

Discussion

Comparison with Rotational Constants.-For a precise determination of molecular structure the results from electron diffraction should be combined with spectroscopic rotational constants, which are directly related to the moments of inertia of the molecule. This comparison displays the credibility of the determined structure and enables us to make the best use of available experimental information.21 Strictly speaking, the observed values from either source require small corrections for the effects of molecular vibrations, such as shrinkage effects, vibrational anharmonicity, and vibration-rotation interaction. Such effects have been stud-

(21) K. Kuchitsu, T. Fukuyama, and *Y.* Morino, *J. Mol. Stuucl.,* **1, 463 (1967-1968).**

ied in detail^{22,23} and a convenient method for comparison by way of the *rz* structure has been presented. So far, there are only a few reports on the critical examination of the consistency of diffraction and spectroscopic experiments.

The interatomic distances r_g were converted into r_g distances using the quadratic force constants reported by Ziomek and Piotrowski.²⁰ Small corrections were made⁶ for the extrapolation from r_{α} to r_{α}^{0} , which represents the average structure for the ground vibrational state,²² by the use of the a_3 parameters for diatomic molecules.¹⁸ For the bonded distances the decrease due to vibrational anharmonicity and the apparent increase due to the perpendicular vibrations were estimated, whereas the zero-point bond angles θ_{α}^{0} were assumed to be equal to θ_{α} ⁶

On the other hand, the rotational constants B_0 have been determined⁹ from microwave spectroscopy, whereas the C_0 constants are yet unknown for these symmetric-top molecules. The B_0 constants for POF₃, POC13, and PSC13, 4594.25, 2015.20, and 1402.G4 MHz, gave the values of *U,,* 4589, 2013, and 1402 MHz, respectively, by adding the harmonic vibration-rotation constants calculated from normal-coordinate analyses. Since the above r_{α}^{0} structure from electron diffraction should be essentially equal to the r_z structure, the rotational constant $B_z(ED)$ calculated from $r_{\alpha}⁰$ should correspond to the above $B_{\rm z}$ (MW) obtained from microwave spectroscopy. The agreements between the data from the two independent experiments, summarized in Table XI, are within $0.1-0.2\%$ in all cases.

	TABLE XI							
COMPARISON OF STRUCTURE AND ROTATIONAL CONSTANTS								
	This study	Ref 11						
	POF ₃							
$B_z(ED)$, MHz	4600							
$B_z(MW), b MHz$	4589	÷						
	POCl_3							
$r_a(P-Cl)$. Å	1.992 ± 0.003	2.002 ± 0.002						
$r_a(P-O)$, \AA	1.447 ± 0.005	1.434 ± 0.005						
θ_{α} (Cl-P-Cl), deg	103.3 ± 0.2	103.8 ± 0.35						
$B_z(ED)$, MHz	2018	2004						
$B_{\lambda}(\text{MW})$, MHz	2013							
	PSCI ₃							
$r_a(P-Cl)$, \AA	2.010 ± 0.003	2.020 ± 0.002						
$r_a(P-S)$, \AA	1.884 ± 0.005	1.908 ± 0.006						
θ_{α} (Cl-P-Cl), deg	101.8 ± 0.2	101.8 ± 0.35						
$B_z(ED)$, MHz	1403	1381						
$B_{\rm s}$ (MW), MHZ	1402							

^a Calculated from electron diffraction structures. ^b Calculated from the microwave *Bo* constants given in ref 9.

This comparison may be visualized in a more direct way. The geometry of a PXY_3 -type molecule is described by three parameters: for instance, $r(P-Y)$, $r(P-X)$, and $\theta(Y-P-Y)$. In other words, the structure may be represented by a certain point in a three-dimensional space, the coordinates of which are the three pa-

(23) K. Kuchitsu, *ibid.,* **49,** 4456 (1968).

Figure 3.-Diagrams of average structures: *P,* parameters determined in the present study with limits of error indicated by ellipses; *V,* parameters reported by Vilkov, *et al."* Solid lines indicate the conditions set by the rotational constants⁹ obtained from microwave spectroscopy for the bond angles given in the diagrams. The parameters determined by electron diffraction vary with the scale factor as indicated by broken lines; see text.

rameters given above. Such a space is shown in Figure *3,* where the angle coordinate is taken perpendicular to the paper. The rotational constant $B_z(MW)$ provides one relation among the three parameters or a surface in that space. Three sections of the surface are shown for each molecule in the figure by a set of nearly straight lines in the neighborhood of the most probable angle determined by electron diffraction. Actually, such a surface turns out to be essentially a plane, which is so parallel to the angle coordinate that the section line is hardly displaced by the uncertainty in the angle parameter. This tendency typically appears in the POCl₃ case, where the B_z constant is shown to be insensitive to the angle parameter.

The most probable r_{α}^{0} ($\approx r_{z}$) parameters determined from the present analysis are shown by *P* with the estimated uncertainty indicated by an ellipse. This uncertainty is larger in the direction of the scale factor varia $tion²⁴$ shown by a broken line. Since the error ellipsoid overlaps with the surface in each case, the consistency between the two independent experimental results within their uncertainties has been confirmed.

Upon closer examination, however, the diffraction points are displaced in the same direction from the *B,* lines in all cases. This suggests the presence of an unknown systematic error in the conversion of the structure, although the displacements (about 0.08%) are smaller than the uncertainty due to the scale factor $(3\sigma \approx 0.18\%).$

Provided that this small deviation is ascribed to the systematic error in the scale factor, then the most probable r_z structure should correspond to the point where the B_z line and the scale factor line cross each other.²⁴ On the other hand, the neglect of the interactions between the bending and stretching vibrations, on which the estimation of r_α^0 from r_α is based,⁶ may cause a small systematic uncertainty in r_a ⁰ for those molecules which have relatively low vibrational frequencies.

The present result may be compared with the recent electron diffraction study of POCl₃ and PSCl₃ by Vilkov, *et al."* Their bond angles agree with ours, whereas their bond lengths (presumably r_a) differ by about

⁽²²⁾ *Y.* Morino, K Kuchitsu, and T. Oka, *J. Chein. Phys* , **96,** 1108 (1962), K. Kuchitsu and S. Konaka, *rbtd.,* **46,** 4342 (1966)

⁽²⁴⁾ *Y.* Morino, K. Kuchitsu, Y. Hori, **and** M. Tanimoto, *Bull. Chem.* **SOC.** *Jag.,* **41,** 2349 (1968).

A calculation of B_z from their structure, shown in Table XI, results in the differences of **0.5** and 1.6% for $POCl₃$ and $PSC1₃$, respectively, from the corresponding spectroscopic B_z . This situation is also demonstrated in Figure 3, where the point V represents the parameters obtained by them with their reported uncertainty indicated by an ellipse. Their results thus appear to be inconsistent with the spectroscopic constants.

Bonding and Structure.—Now let us compare the bond lengths and angles determined above with those in related molecules. Such comparisons should ultimately be made for the equilibrium structures r_{e} , but the r_{e} structure is not readily accessible from experiment except for diatomic and some triatomic molecules. Instead, r_g and θ_α are equally reasonable and more convenient quantities for this comparison;²⁸ r_g has a clear physical meaning, and $r_g - r_e$ is estimated to be essentially constant for bonds with the same atom pair and similar bond nature. On the other hand, θ_{α} retains the symmetry of the molecule and is essentially equal to $\theta_{\rm e}$.^{6,26}

Observed variations in the structures of phosphorus halides (Figure 4), including PF_{3} ⁶ PC1₃,²⁵ PSF₃,⁹ PF₃-

Figure 4.-Structures of phosphorus halides,

 BH_3 ,²⁷ PF_5 ,⁴ and PCl_5 ,²⁸ may be summarized as follows. **(A)** Coordination of an oxygen or sulfur atom to the lone pair of PF_3 (PCl₃) makes the P-F (P-Cl) bond decrease and the bond angle $F-P-F$ (Cl- $P-Cl$) increase. This is also the case for $BH₃$ coordination. (B) The above tendency is stronger for oxygen than for sulfur. (C) Similar bond shortening has been observed for the equatorial P-F (P-Cl) bond in PF_5 (PCl₅) as compared

-
- **(26) K.** Kuchitsu, *Bull. Chem.* **SOC.** *Jap.,* in press. (27) R. L. Kuczkowski and D. R. Lide, *J. Chem. Phys.,* **46,** 357 (1967).
- **(28) G.** V. Romanov and V. P. Spiridinov, *Zh. Strukt. Khim., 8,* 159 (1967); **W.** J. Adams and L. S. Bartell, to be submitted for publication.

with PF_3 (PCl₃).^{4,28} (D) The P-O and P-S bond lengths in the fluorides are shorter than those in the corresponding chlorides. (E) The Y-P-Y bond angles for the fluorides $(Y = F)$ are smaller than those in the corresponding chlorides $(Y = Cl)$.

The above-mentioned systematic features, which are similar to those observed for $(CH_3)_nPF_{5-n}$ and discussed by Bartell and Hansen^{3,4} and by Gillespie,^{1,2} may be accounted for in terms of Gillespie's electronpair repulsion theory. According to his model, the electrons in the lone pair are drawn away from the phosphorus atom by the coordination or bonding of an electronegative atom so as to alleviate the "repulsion" caused by the lone pair; thus the bond angle should increase and the bond length decrease (trends A-C). Trends D and E may also be understood by a similar argument.

Figure 5.-Variations of the phosphorus bond angles Y-P-Y in PXY_3 with the electronegativity E of the atom X. For PY_3 the parameter *E* is arbitrarily set equal to zero. Data with open circles belong to our studies, while those with solid circles are taken from the literature.

Figure 6.-Variations of the P-Y and P-X bond lengths in PXYa with the electronegativity E of the atoms X and *Y,* respectively. For PF_5 and PCl_5 the equatorial P-F and P-C1 bond lengths are plotted against $E(F)$ and $E(Cl)$, respectively (represented in parentheses), and do not fall on the regular curves, whereas better fits result if $\frac{1}{2}E(F)$ and $\frac{1}{2}E(C1)$ are plotted. See Figure *5* for other comments.

In order to summarize the trends in a semiquantitative way, the Y-P-Y angles and the P-Y $(P-X)$ bond lengths in the PXY_3 molecules are plotted against the

⁽²⁵⁾ **K.** Hedberg and M. Iwasaki, J. *Chem. Phys., 86,* 589 (1962).

electronegativities²⁹ E of the X *(Y)* atoms. For PF_3 and PCl₃, where the atom X is missing, the electronegativities are regarded as zero. Regular curves are obtained for the bond angles (Figure *5)* and also for the

(29) H. 0. Pritchard and H. A. Skinner, *Chem. Rev.,* **66,** 745 (1955). manuscript.

 $P-F$ and P-Cl bond lengths in PF_5 and PCl_5 apparently fit in the curves if they are, rather arbitrarily, plotted against $\frac{1}{2}E(F)$ and $\frac{1}{2}E(C1)$, respectively.

tained for the bond angles (Figure 5) and also for the **Acknowledgment.**—The authors wish to thank Pro-
bond lengths (Figure 6). In addition, the equatorial fessor L. S. Bartell for his valuable comments on the

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY AND INSTITUTE OF MATERIALS SCIENCE, UNIVERSITY OF CONNECTICUT, STORRS, COKNECTICUT *06268*

The Molecular Structures of 1,2-, 1,7-, and 1,12-Dicarba-closo-dodecaborane(12), $B_{10}C_2H_{12}$ ¹

BY ROBERT K. BOHN* AXD MARTHA D. BOHN

Received January 23, 1970

The molecular structures of 1,2-, 1,7-, and 1,12-dicarba-closo-dodecaborane(12), $B_{10}C_2H_{12}$, o -, m -, and p-carborane, respectively, have been determined from clectron diffraction studies of their vapors. Each structure is a slightly distorted icosahedron. The structure of p-carborane with D_{5d} symmetry was characterized most precisely with the following parameter values: B-C = 1.710 \pm 0.011 Å, B2-B3 = 1.792 \pm 0.007 Å, B2-B7 = 1.772 \pm 0.013 Å, B-H = 1.22 \pm 0.02 Å, and C-H $= 1.15 \pm 0.09$ Å. Each error limit is the geometric mean of 3 times the least-squares standard deviation and 3 times an estimated 0.1% standard deviation in the scale factor. A "diameter" along the $C \cdots C$ axis is about 10% shorter than a "diameter" along a B \cdots B axis. o - and m-carborane have much lower symmetry, C_{2v} , and unique structures could not be determined. In *o*-carborane, C-C = 1.65 \pm 0.05 Å, B-C (av) = 1.711 \pm 0.014 Å, and B-B(av) = 1.793 \pm 0.010 Å. In *m*carborane, B-C(av) = 1.726 \pm 0.010 Å and B-B(av) = 1.805 \pm 0.008 Å. The B-B bond lengths in the icosahedral carboranes suggest the trend that B-B bonds nearer carbon atoms are longer.

Introduction

Three isomers of the icosahedral carborane² $B_{10}C_2H_{12}$ are known.³⁻⁶ The isomers, 1,2-, 1,7-, and 1,12-dicar**ba-closo-dodecaborane(12),** will be called 0-, *m-,* and 9-carborane, respectively. Crystal structures of a variety of derivatives of *0-* and m-carborane have been determined. In each the structure of the boron carbon cage is a slightly distorted icosahedron. Since the carboranes are nearly spherical, crystals of the compounds are disordered with a statistical population of borons and carbons at each site. Even in crystals of many of the substituted carboranes there is some disorder. Therefore, not much precise structural information is known. Russian electron diffraction workers have reported results on o^{-7} and m-carborane,⁸ C, C'-dimethyl o -carborane,⁹ and a C, C' - and a B, B' -diiodo-m-carbo-

* To whom correspondence should be addressed.

- (1) R. K. Bohn and M. D. Bohn, Abstracts, 152nd Kational Meeting of the American Chemical Society, New York, N. *Y.,* Sept 1966.
- (2) R. Hoffmann and W. N. Lipscomb, *J. Chem. Phys.,* **36,** 3489 (1962). (3) T. L. Heying, J. W. Ager, S. L. Clark, D. J. Mangold, H. L. Gold-
- stein, M. Hillman, **I<.** J. Polak, and J. W. Szymanski, *Inovg. Chem.,* **2,** 1089 (1963).
- (4) M. M. Fein, J. Bobinski, N. Mayes, N. Schwartz, and M. *S.* Cohen, *ibid.,2,* 1111 (1963).
	- *(5)* D. Grafsteinand J. Dvorak, *ibid.,* **2,** 1128 (1963).
- **(6)** *S.* Papettl and T. L. Heying, *J. Amev. Chem. Soc.,* **86,** 2295 (1964).
- **(7)** L. V. Vilkov, V. S. Mastryukov, P. A. Akishin, and A. F. Zhigach, *Zh. Stuukt. Khim.,* **6,** 447 (1965); L. V. Vilkov, V. *S.* Mastryukov, A. F. Zhigach, and V. N. Siryatskaya, *ibid.,* **7,** 5 (1966).

(8) V. S. Mastryukov, L. V. Vilkov, A. F. Zhigach, and V. N. Siryatskaya, *ibid.,* **10,** 136 (1969).

(9) L. V. Vilkov, V. S. Mastryukov, A. F. Zhigach, and V. N. Siryatskaya, *ibid., 8,* **3** (1967).

rane.¹⁰ These reports confirm the icosahedral structures of the ortho and meta isomers and report average bond lengths. We undertook electron diffraction studies of the three unsubstituted carboranes to determine the structure of p -carborane, to characterize the distortions from icosahedral symmetry, and to deduce structural relationships among the isomers.

Experimental Section and Data Analysis

Samples of the three carborane isomers were purified by prepa rative vapor phase chromatography and were obtained from Dr. H. A. Schroeder of Olin Corp. The electron diffraction patterns were recorded on the University of Oslo apparatus with a nozzle temperature of 70". Exposures were taken at two nozzle to plate distances, 48 and 19 cm, which covered the scattering ranges 1.5 \leq *s* \leq 20 Å⁻¹ and 7 \leq *s*₁ \leq 45 Å⁻¹, respectively. The electron wavelength was 0.064606 Å. Four plates from each range were studies for each compound. These were photometered and converted into molecular scattering intensity curves by correcting for nonlinearity of response of the photographic emulsion, for plate flatness, and for the shape of the rotating sector and by subtracting a background intensity.¹¹ The intensity and background values are given in Tables IA and IB. **A** theoretical intensity curve was calculated according to

$$
sM(s) = \sum_{\substack{i,j \\ (i>j)}} \sum_{j} A_{ij} \exp(-l_{ij}^{2} s^{2}/2) \sin (s r_{ij})/r_{ij}
$$

where $A_{ij} = Z_i Z_j/(1 - F_B/Z_B)^2$. Z_i and F_i are the atomic

⁽IO) V. S. Mastryukov, A. F. Zhigach, and V. N. Siryatskaya, *Acta Cvystdogv., Sect. A,* **26,** S165 (1969).

⁽¹¹⁾ The reduction of the data is discussed in detail by 0. Bastiansen and P. N. Skancke, *Advax. Chem. Phys.,* **3,** 323 (1961).